Extraction of Illumination Invariant Features using Fuzzy Threshold based Approach
نویسندگان
چکیده
The field of face recognition is increasingly investigated for access control, face based search, passport processing, security, surveillance, etc. applications. Performance of face recognition systems under constrained environment is quite satisfactory, but face recognition in unconstrained environment is yet a challenging problem due to key technical challenging issues. Varying illumination is one of the key issues in real time face recognition applications. Experimental assessment of various methods developed by research community demonstrates that, yet there is a need and scope for improving methods to handle the varying illumination problem. In this paper, a novel approach, referred to as fuzzy threshold based local binary pattern is proposed for extracting illumination invariant features. Local binary pattern based method is modified by introducing a fuzzy based threshold for generating binary pattern. Effectiveness of proposed method is assessed on extended Yale B face database. Experimental results demonstrate that proposed method performs better than conventional binary pattern under complex illumination conditions. General Terms Face Recognition; Fuzzy Techniques; Image Processing; Pattern Recognition.
منابع مشابه
Modular PCA Based Fuzzy Neural Network Approach for Illumination and Expression invariant 3D Face recognition
In this paper a Modular PCA based fuzzy neural network approach for face recognition is proposed. The proposed technique improves the efficiency of face recognition; it performs well under varying illumination and expression conditions and its performance is better as compared to the traditional PCA methods. In this method the face image is divided into three horizontal strips thus the face ima...
متن کاملA Study on the Effective Approach to Illumination-Invariant Face Recognition Based on a Single Image
In this paper, the methods for single image-based face recognition under varying lighting are reviewed. Meanwhile, some representative methods as well as their combinations are evaluated by experiments, and the underlying principle of the experimental results is investigated. According to our investigation, it is almost impossible to attain a satisfied face recognition result by using only one ...
متن کاملA Fall Detection System based on the Type II Fuzzy Logic and Multi-Objective PSO Algorithm
The Elderly health is an important and noticeable issue; since these people are priceless resources of experience in the society. Elderly adults are more likely to be severely injured or to die following falls. Hence, fast detection of such incidents may even lead to saving the life of the injured person. Several techniques have been proposed lately for the fall detection of people, mostly cate...
متن کاملDetection of Defects in Dental with Support Vector
The process of dental defect analysis is to provide an efficient clinical support with less complexity in segmentation, better accuracy in foreground object detection and to provide local contrast and luminance invariant features using the various descriptors. The automatic decision support system includes adaptive threshold and support vector machine for dental disease prediction. The proposed...
متن کاملEfficient Object Recognition Using Discriminative Weight Learning
Object recognition is the process of identifying and detecting an object or a feature in a digital image or video. But it is also challenging vision problems because objects often suffer from significant scale, illumination variations, material recognition, pose changes, background clutter and partial occlusion. The scale invariant feature transform (SIFT) is a leading feature extraction approa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011